Journal of Organometallic Chemistry, 431 (1991) 159–170 Elsevier Sequoia S.A., Lausanne JOM 22575

Gehinderte Ligandbewegungen in Übergangsmetallkomplexen

XL *. Synthese und dynamisches Verhalten von Tricarbonyl- η^4 -tricyclo[6.3.0.0^{2,7}]undeca-3,5-dientrimethylphosphit-metall(0)- und Dicarbonyl- η^4 tricyclo[6.3.0.0^{2,7}]undeca-3,5-dienbis(trimethylphosphit)metall(0)-Komplexen der Elemente Chrom, Molybdän und Wolfram

Cornelius G. Kreiter, Michael Kotzian

Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Straße, W-6750 Kaiserslautern (Deutschland)

Saim Özkar und Izzet Abu-Mour

Orta Doĝu Teknik Üniversitesi, Kimya Bölümü, Ankara (Türkei) (Eingegangen den 12. Dezember 1991)

Abstract

Tricarbonyl- η^4 -tricyclo[6.3.0.0^{2,7}]undeca-3,5-diene-trimethylphosphite-metal(0) and *cis*-dicarbonyl- η^4 -tricyclo[6.3.0.0^{2,7}]undeca-3,5-diene-bis(trimethylphosphite)metal(0) complexes of chromium (1, 4), molybdenum (2, 5) and tungsten (3, 6) have been prepared photochemically in high yields from the corresponding pentacarbonyl-trimethylphosphite-metal(0) or tetracarbonyl-bis(trimethylphosphite) metal(0) complexes, respectively, with tricyclo[6.3.0.0^{2,7}]undeca-3,5-diene. The stereochemistry of 1-6 was determined by IR and NMR spectroscopy. In the case of tricarbonyl- η^4 -tricyclo[6.3.0.0^{2,7}]undeca-3,5-diene-trimethylphosphite-tungsten(0) (3), X-ray crystal and molecular structure analysis confirm the conclusions drawn from the spectroscopic data. The distorted pseudo-octahedral complexes 1-3 are obtained exclusively as *f*-isomers, and 4-6 as *af*-isomers. All of them show hindered ligand movements, according to their temperature-dependent NMR spectra. For 1-3 a carbonyl scrambling, and for 4-6 a rotation of the diene ligand is observed.

Correspondence to: Professor Dr. C.G. Kreiter, Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Straße, W-6750 Kaiserslautern, Deutschland, or Professor Dr. S. Özkar, Orta Doĝu, Teknik Üniversitesi, Kimya Bölümü, Ankara, Türkei.

^{*} XXXIX. Mitteilung siehe Lit. 1.

Zusammenfassung

Die Tricarbonyl- η^4 -tricyclo[6.3.0.0^{2,7}]undeca-3,5-dien-trimethylphosphit-metall(0) und *cis*-Dicarbonyl- η^4 -tricyclo[6.3.0.0^{2,7}]undeca-3,5-dien-bis(trimethylphosphit)metall(0) Komplexe des Chroms (1, 4), Molybdäns (2, 5) und Wolframs (3, 6) wurden photochemisch in hohen Ausbeuten aus den entsprechenden Pentacarbonyl-trimethylphosphit-metall(0) oder Tetracarbonyl-bis(trimethylphosphit)metall(0) Komplexen mit Tricyclo[6.3.0.0^{2,7}]undeca-3,5-dien (tcud) synthetisiert. Die Stereochemie von 1-6 wurde IR- und NMR-spektroskopisch ermittelt. Im Falle von Tricarbonyl- η^4 -tricyclo[6.3.0.0^{2,7}]undeca-3,5-dien-trimethylphosphit-wolfram(0) (3) konnten die aus den spektroskopischen Daten gezogenen Schlüsse durch eine Röntgen-Strukturanalyse bestätigt werden. Die verzerrt pseudo-oktaedrischen Komplexe 1-3 werden ausschließlich als f-, 4-6 als af-Isomere erhalten. Alle Komplexe ergeben temperaturabhängige NMR-Spektren, die gehinderte Ligandbewegungen anzeigen. Für 1-3 wird ein Carbonyl-Austausch, für 4-6 eine Rotation des Dien-Liganden beobachtet.

Einleitung

Tetracarbonyl- η^{4} -1,3-dien-metall(0)-Komplexe weisen eine bewegliche, quasioktaedrische Koordinations-Sphäre auf [1–3]. Die gehinderte Rotation des Dien-Liganden bleibt auch erhalten, wenn ein oder zwei CO-Liganden durch Trimethylphosphan, Trimethylphosphit oder Diphosphan-Chelatliganden ersetzt werden [4–9]. Im Zuge unserer Studien der dynamischen Stereochemie quasi-oktaedrischer Dien-Komplexe sollte der Einfluß von Donorliganden auf die gehinderte Dien-Rotation an allen drei Elementen der 6. Gruppe zu untersucht werden. Als geeignetes Dien für dieses Vorhaben erschien Tricyclo[6.3.0.0^{2,7}]undeca-3,5-dien (tcud), das auch den Zugang zu den Tetracarbonyl- η^4 -dien-metall(0)-Komplexen des Chroms, Molybdäns und Wolframs ermöglicht [1].

Ergebnisse

Die UV-Bestrahlung von Pentacarbonyl-trimethylphosphit-chrom(0), -molybdän(0) bzw. -wolfram(0) [10] oder Tetracarbonyl-bis(trimethylphosphit)chrom(0), -molybdän(0) bzw. -wolfram(0) [11] in n-Pentan bei 253 K in Gegenwart von tcud [13] liefert in Ausbeuten zwischen 40 und 70% die Tricarbonyl- η^4 tricyclo[6.3.0.0^{2,7}]undeca-3,5-dien-trimethylphosphit-metall(0) und Dicarbonyl- η^4 tricyclo[6.3.0.0^{2,7}]undeca-3,5-dien-bis(trimethylphosphit)metall(0) Komplexe des Chroms (1, 4), Molybdäns (2, 5) und Wolframs (3, 6).

$$\begin{bmatrix} M(CO)_{6-n} \{ P(OCH_3)_3 \}_n \end{bmatrix} + \text{tucd} \xrightarrow[-nCO]{} \begin{bmatrix} M(CO)_{4-n} \{ P(OCH_3)_3 \}_n (\eta^4 - \text{tucd}) \end{bmatrix}$$

$$\begin{array}{c} n = 1 & 2 \\ n = 1 & 2 \\ M = Cr & 1 & 4 \\ Mo & 2 & 5 \\ W & 3 & 6 \\ \end{array}$$

Sowohl *cis*- als auch *trans*- $[M(CO)_4[P(OCH_3)_3]_2]$ ergeben mit tucd identische Produkte, was auf eine rasche photochemische *cis-trans*-Isomerisierung zurückzuführen ist [5].

Die Komplexe 1-6 wurden säulenchromatographisch an Kieselgel bei 253 K gereinigt. Aus n-Pentan scheiden sie sich beim Abkühlen der Lösung analysenrein in Form gelber Kristalle ab.

Fig. 1. Mögliche Stereoisomere der Komplexe $[M(CO)_{4-n}[P(OCH_3)_3]_n(\eta^4-tucd)]$ (n = 1, 2) (1-6); der tucd-Ligand ist durch das Dienfragment angedeutet.

Stereochemie

Die Komplexen 1-6 sind wie die Tetracarbonyl- η^4 -dien-metall(0)-Verbindungen [1,3] und deren mit Donorliganden substituierte Derivate [4-9] quasi-oktaedrisch. Der η^4 -Dienligand besetzt formal zwei *cis*-ständige Koordinationsstellen. Wegen der C_s -Symmetrie des tcud-Liganden sind für 1-3 vier und für 4-6 sechs Stereoisomere möglich. Werden dem tcud-Liganden willkürlich die Positionen *b* und *c* des Koordinationsoktaeders zugeordnet [9], so können die Isomeren durch die von den Phosphitliganden besetzten Stellen charakterisiert werden (Fig. 1).

IR-Spektren

Im ν (CO)-Bereich zeigen 1-3 die typischen, praktisch gleichintensiven drei Banden von fac-[M(CO)₃L₃]-Komplexen, 4-6 ergeben zwei etwa gleichintensive ν (CO)-Banden (Tab. 1), was für cis-[M(CO)₂L₄]-Komplexe spricht [13]. Die

Tabelle 1

 ν (CO)-Streckschwingungen (cm⁻¹) und CO-Kraftkonstanten (N m⁻¹) der Komplexe 1–6 in n-Pentan-Lösung. k_1 sind die Kraftkonstanten der zu den Trimethylphosphit-Liganden *cis*-, k_2 der zu den Trimethylphosphit-Liganden *trans*-ständigen CO-Liganden, k_i sind die Wechselwirkungskonstanten

Komplex	A'(1)	A'(2)	A"	<i>k</i> ₁	k2	k _i	
1	1986	1882	1928	1538	1449	37	
2	1993	1882	1932	1546	1450	39	
3	1998	1880	1935	1536	1447	40	
4	1921		1842	1430		60	
5	1919		1840	1427		60	
6	1930		1850	1443		61	

Tabelle 2

Komplex	H4,5	H3,6	H2,7	H1,8	H9,11	H10	P(OCH ₃) ₃
1	4.89	3.51	2.00	1.84	1.53	1.40	3.28
	(7.3)						(11.5)
2	5.07	3.78	2.05	1.89	1.52	1.39	3.24
	(7.4)						(11.5)
3	4.97	3.60	1.98	1.94	1.57	1.45	3.25
	(7.5)						(10.5)
4	5.04	3.29	2.01	1.66	1.56	1.37	3.53
	(8.3)						(10.3)
5	5.06	3.32	2.08	1.68	1.59	1.38	3.52
	(9.0)						(10.5)
6	5.12	3.21	2.10	1.98	1.60	1.39	3.45
	(9.0)						(10.3)

¹H-NMR-Chemische Verschiebungen in δ ppm rel. i. TMS und ³¹P-¹H-Kopplungskonstanten in Klammern der Komplexe 1-6 bei Raumtemperatur in Toluol- d_8

Kraftkonstanten sind näherungsweise [14] unter Annahme lokaler C_s -Symmetrie für die M(CO)₃- bzw. M(CO)₂-Fragmente berechnet.

NMR-Spektren

Die ¹H-NMR-Spektren von 1-3 sind temperaturunabhängig. Sie enthalten jeweils das intensive Dublett des Trimethylphosphit-Liganden sowie sechs Signale, die aufgrund ihrer chemischen Verschiebungen. Aufspaltungsmuster und Intensitäten den Protonen des tcud-Liganden zugeordnet werden können (Tab. 2). Die Zuordnung is durch Homo-Entkopplungs-Experimente abgesichert. Die Signale von H4.5 sind durch ³¹P-¹H-Kopplung weiter aufgespalten. Aus der Zahl der Signale folgt C_s-Symmetrie für die Komplexe, die ${}^{31}P^{-1}H$ -Kopplung von H4,5 beweist das überwiegende Vorliegen der f-Isomeren. Die Molekülstruktur von 3 ist mit diesem Schluß im Einklang. Kleine Populationen der a-, d- oder e-Isomeren können in Lösung allerdings nicht ausgeschlossen werden. Bei Raumtemperatur gleichen die ¹H-NMR-Spektren von 4-6 denen von 1-3. Die Temperaturabhängigkeit der Signale läßt sich ¹H-NMR-spektroskopisch nicht so gut verfolgen wie bei anderen Dicarbonyl- η^4 -dien-bis(trimethylphosphit)metall(0)-Komplexen [5,6]. Lediglich das Trimethylphosphit-Signal von 6 ist zwar deutlich temperaturabhängig, doch konnte dessen Tieftemperatur-Grenzspektrum nicht erhalten werden. Bei den tiefsten, experimentell erreichbaren Temperaturen, erscheint das Trimethylphosphit-Signal von 6 als Pseudotriplett, dessen Zentrallinie beim Erwärmen in mehrere Linien aufspaltet. Diese Aufspaltung wird naturgemäß auch an den Trimethylphosphit-Signalen der Komplexe 4 und 5 beobachtet. Hieraus können die Kopplungskonstanten J_{AX} und $J_{AX'}$ der AA'X₉X'₉-Spinsysteme ermittelt werden [15].

Die ¹³C-NMR-Spektren von 1–6 zeigen sechs Signale für den Dien-Liganden zwischen 25 und 85 ppm (Tab. 3), deren Zuordnung auf ihren chemischen Verschiebungen und auf Off-Resonance-Experimenten basiert. Die Signale der koordinierten olefinischen C-Atome sind nach höherem Feld verschoben [16]. Tabelle 3

Komplex	C4,5	C3,6	C2,7	C1,8	C9,11	C10	P(OCH ₃) ₃	СО	T (K)
1	82.54	81.41	46.28	40.87	32.56	25.17	51.20	236.16 (20.6) 235.92 (33.0)	193
	82.17	81.24	46.44	41.21	32.45	25.09	51.21 (5.6)	235.76 (33.0)	223
2	84.51	84.10	47.54	40.75	32.73	25.18	50.01 (6.2)	226.15 (22.2) 220.29 (31.5)	223
	83.40	83.22	47.65	41.09	32.59	25.11	50.86	224.30 (27.2)	283
3	79.28	74.12	46.31	41.86	32.26	25.01	51.21	217.81 (19.2) 211.58 (21.0)	203
	78.81	73.27	46.50	42.47	32.14	24.97	51.19 (4.3)	215.36 (7.0)	283
4	83.58	76.10	45.73	44.60	33.14	25.79	52.06	243.94 (52.2)	273
5	83.11	75.68	45.32	44.19	32.78	25.37	51.61	243.94 (51.1)	283
6	80,32	66.07	45.82	44.94	33.10	25.85	51.86	226.52	293

¹³C-NMR-Chemische Verschiebungen in δ ppm rel. i. TMS und ³¹P-¹³C-Kopplungskonstanten (Hz) der Komplexe 1-6 in Toluol- d_8

Zwischen 293 und 193 K ändern weder die tcud-Signale noch das Trimethylphosphit-Signal ihre Form, sondern werden lediglich unspezifisch nach höheren oder tieferen Feldern verschoben. Dagegen sind die CO-Signale von 1-3 temperaturabhängig. Bei 283 K ergeben sie jeweils nur ein Dublett, das sich beim Abkühlen verbreitert und in zwei Dubletts mit den Intensitäten 1:2 aufspaltet.

Bei 283 K gleichen die ¹³C-NMR-Spektren von **4–6** denen von **1–3**, d. h. für den Dienliganden werden sechs, für die CO- und Trimethylphosphit-Liganden je ein Signal erhalten. Beim Abkühlen wird das Signal des Phosphit-Liganden verbreitert, jedoch nicht aufgespalten. Die übrigen Signale sind temperaturunabhängig.

Die ${}^{31}P{}^{1}H$ -Spektren von 1-3 enthalten nur ein scharfes, temperaturunabhängiges Singulett für den Trimethylphosphit-Liganden (Tab. 4). Dagegen

Tabelle 4

 31 P-{¹H}-NMR-spektroskopische Daten der Komplexe 1-6 in Toluol- d_8 . Chemische Verschiebungen in ppm rel. H₃PO₄-Kapillare

Komplex	δ (ppm)	$^{2}J(^{31}P-^{31}P)$	${}^{1}J({}^{181}W-{}^{31}P)$	T (K)
1	203.53			303
2	176.10			303
3	146.39		370	303
4	211.10			173
5	207.9, 211.3, 209.49			125 ª 293
6	159.99, 156.87,	49.2	383	183
	157,27		383	233

^a In Dimethylether-d₆.

ergibt 6 bei 183 K zwei Signale, die ein AB-System bilden. Jeweils ein ¹⁸³W-Satellit der inneren Linien dieses AB-Systems ist deutlich zu erkennen. Aus der Signalaufspaltung lassen sich die Absolutbeträge der Kopplungskonstanten bestimmen. Ein negatives Vorzeichen ist für die ${}^{2}J({}^{31}P-{}^{31}P)$ -Kopplungen anzunehmen wie es in vergleichbaren Komplexen diskutiert wird [17,18]. Temperaturerhöhung bewirkt das Koaleszieren der Signale. Bei 243 K ist bereits das Hochtemperatur-Grenzspektrum, bestehend aus einem Singulett mit ¹⁸³W-Satelliten erreicht. Für 5 wird die Aufspaltung des Signals der beiden Trimethylphosphit-Liganden erst bei 125 K beobachtet, das Tieftemperatur-Grenzspektrum ist damit jedoch noch nicht ganz erreicht. Noch niedriger liegt offenbar die Koaleszenztemperatur des Trimethylphosphit-Signals von 4. Selbst bei 125 K wird lediglich eine Verbreiterung beobachtet.

Im Vergleich zu freiem Trimethylphosphit sind die ³¹P-NMR-Signale von 1-6 wie bei anderen Trimethylphosphit-Komplexen nach tieferen Feldern verschoben [19]. Diese Verschiebungen nehmen in der Reihenfolge Wolfram, Molybdän, Chrom zu, was für eine stärkere Chrom-Phosphor-Bindung spricht.

Molekülstruktur von Tricarbonyl- η^4 -tricyclo[6.3.0.0^{2,7}]undeca-3,5-dien-trimethyl-phosphit-wolfram(0) (3)

Komplex 3 kristallisiert triklin in der Raumgruppe $P\overline{1}$ [9]. Die Ortskoordinaten der Nicht-Wasserstoffatome sind in Tab. 5, die wichtigsten Bindungslängen sowie

Tabelle 5

Lageparameter der Nichtwasserstoff-Atome von Tricarbonyl- η^4 -tricyclo[6.3.0.0^{2,7}]undeca-3,5-dien-trimethylphosphit-wolfram(0) (3)

Atom	x	у	Z	
W 1	0.1976(0)	0.2743(0)	0.0248(0)	
P 1	0.3747(2)	0.3503(1)	0.2146(3)	
O12	0.4103(8)	0.3148(4)	0.4283(8)	
O13	0.5287(6)	0.3385(4)	0.1129(10)	
O14	0.3434(6)	0.4577(3)	0.2520(9)	
O15	0.1540(8)	0.4500(4)	-0.1957(10)	
O16	0.0030(7)	0.3298(5)	0.4010(9)	
O17	-0.0992(6)	0.2484(4)	-0.1895(10)	
C1	0.3282(9)	-0.0012(5)	-0.3243(12)	
C2	0.2246(9)	0.0930(5)	-0.2794(11)	
C3	0.3034(8)	0.1714(4)	-0.2531(10)	
C4	0.3981(9)	0.1755(6)	-0.0876(15)	
C5	0.3610(8)	0.1488(4)	0.0979(11)	
C6	0.2286(8)	0.1189(4)	0.0977(11)	
C7	0.1847(7)	0.0619(4)	-0.0787(11)	
C8	0.2885(7)	- 0.0303(4)	-0.1208(11)	
C9	0.2162(9)	-0.1113(5)	-0.1730(13)	
C10	0.1551(11)	-0.1011(6)	-0.3767(17)	
C11	0.2686(13)	-0.0651(6)	-0.4859(14)	
C12	0.5077(13)	0.3468(7)	0.5769(14)	
C13	0.6349(10)	0.3952(7)	0.1380(16)	
C14	0.2058(9)	0.5072(5)	0.3261(14)	
C15	0.1675(8)	0.3859(5)	-0.1144(10)	
C16	0.0736(9)	0.3138(5)	0.2613(12)	
C17	0.0115(7)	0.2550(4)	-0.1157(11)	

Tabelle 6

Ausgewählte Bindungslängen (pm) und -winkel (°) von Tricarbonyl- η^4 -tricyclo[6.3.0.0^{2,7}]undeca-3,5-dien-trimethylphosphit-wolfram(0) (3)

W1-P1	244.2(2)	C16-O16	115.2(14)
W1-C3	244.2(8)	C17–O17	114.4(10)
W1-C4	227.7(8)	C1-C2	158.1(8)
W1-C5	228.1(6)	C1-C8	155.4(16)
W1-C6	241.5(5)	C1-C11	154.7(14)
W1-C15	197.6(7)	C2-C3	150.8(9)
W1-C16	198.8(11)	C2-C7	155.0(15)
W1-C17	199.8(8)	C3-C4	139.4(16)
P1-O12	157.8(8)	C4-C5	142.1(18)
P1-O13	159.1(7)	C5-C6	139.5(11)
P1-O14	160.1(3)	C6-C7	149.3(12)
O12-C12	143.5(15)	C7-C8	155.6(7)
O13-C13	142.7(11)	C8-C9	151.9(9)
O14-C14	144.4(11)	C9-C10	146.9(20)
C15-O15	114.2(10)	C10-C11	152.3(19)
P1-W1-M	99.6(4)	P1-O14-C14	121.8(10)
P1-W1-C15	81.0(4)	C1-C2-C3	114.0(12)
P1-W1-C16	84.6(4)	C1-C2-C7	89.5(10)
P1-W1-C17	160.1(4)	C2-C3-C4	117.4(13)
M-W1-C15	131.7(6)	C3-C4-C5	119.8(14)
M-W1-C16	127.0(6)	C4-C5-C6	115.5(13)
M-W1-C17	100.3(6)	C5-C6-C7	119.5(12)
C15-W1-C16	101.2(6)	C6-C7-C8	114.9(11)
C15-W1-C17	84.7(5)	C6-C7-C2	112.3(11)
C16-W1-C17	84.7(6)	C2-C7-C8	90.6(10)
W1-C15-O15	178.2(12)	C7-C8-C9	116.5(11)
		C7-C8-C1	90.3(10)
W1-C16-O16	174.7(13)	C1-C8-C9	105.4(11)
W1-C17-O17	175.9(12)	C8-C9-C10	105.4(13)
P1-O12-C12	125.8(11)	C9-C10-C11	105.0(15)
P1-O13-C13	129.0(11)	C10-C11-C1	103.6(15)

-winkel in Tab. 6 und die röntgenographischen Daten im experimentellen Teil (Tab. 8) zusammengefaßt, Fig. 2 zeigt eine Projektion der Molekülstruktur. Formal nehmen die Liganden um das Wolfram eine verzerrt oktaedrische Koordinationssphäre ein, wenn das Tricyclo[6.3.0.0^{2,7}]undeca-3,5-dien als zweizähniger Ligand

Tabelle 7

NMR-spektroskopisch bestimmte Aktivierungsparameter der gehinderten Ligandbewegungen in den Komplexen 1-6

ΔH^{\ddagger} (kJ mol ⁻¹)	ΔS^{\ddagger} (J K mol ⁻¹)	$\Delta G_{253}^{\ddagger} (\text{kJ mol}^{-1})$
53.9	19	49.0
56.8	29	49.5
41.8	29	34.5
< 20	_	< 20
21.8	-18	26.4
44.8	31	36.9
	ΔH [‡] (kJ mol ⁻¹) 53.9 56.8 41.8 < 20 21.8 44.8	$\begin{array}{c c} \Delta H^{\ddagger} (kJ \text{ mol}^{-1}) & \Delta S^{\ddagger} (J \text{ K mol}^{-1}) \\ \hline 53.9 & 19 \\ 56.8 & 29 \\ 41.8 & 29 \\ < 20 & - \\ 21.8 & -18 \\ 44.8 & 31 \\ \end{array}$

Fig. 2. schakal-Projektion der Molekülstruktur von Tricarbonyl- η^4 -tricyclo[6.3.0.0^{2,7}]undeca-3,5-dientrimethylphosphit-wolfram(0) (3), schräg auf die idealisierte Spiegelebene des Komplexes.

aufgefaßt wird. Wie in anderen formal oktaedrischen Komplexen mit konjugierten η^4 -Dien- [6] oder η^3 -Enyl-Liganden [20] weichen die Liganden in den Positionen a, d, e und f deutlich von den Hauptachsen des Oktaeders ab. Einerseits sind der Trimethylphosphit- und der CO-Ligand 17 von tcud weggebogen und der Winkel P1-W1-C17 mit 160.1(4)° verkleinert, andererseits sind die CO-Liganden 15 und 16 zum tucd ausgelenkt und der C15-W1-C16-Winkel mit 101.2(6)° vergrößert. Das Dien ist relativ zum Phosphit-Liganden *u*-orientiert. In Komplexen offenkettiger Diene wird dagegen die *o*-Orientierung energetisch bevorzugt. Der Grund für diese Ausnahme ist im hohen sterischen Anspruch des Tricyclus zu suchen. Der tcud-Ligand nimmt die gleiche Konformation wie in den Komplexen [Fe(CO)₃(η^4 -tcud)] [21] und [Mo(CO)₂(η^4 -tcud)₂] [22] ein.

Diskussion

Aus den spektroskopischen Daten der Komplexe 1-6 können sichere Rückschlüsse auf ihre Konfiguration gezogen werden. Die $[M(CO)_3$ - $\{P(OCH_3)_3\}(\eta^4$ -tcud)]-Komplexe 1-3 enthalten faciale $M(CO)_3$ -Gruppen und liegen in Lösung praktisch auschließlich in der f-Form vor. Dagegen wird für $[M(CO)_3\{P(OCH_3)_3\}(\eta^4$ -dien)]-Komplexe mit acyclischen Dien-Liganden überwiegend die a-Form gefunden. Wie die Röntgen-Strukturanalyse von 3 zeigt, wird die f-Konfiguration auch im festen Zustand eingenommen. Im ¹³C-NMR-Spektrum zeigen 1-3 einen gehinderten Austausch der CO-Liganden. Dieser Austausch dürfte mit einiger Sicherheit in einer Art "turnstile"-Bewegung ablaufen wobei sich die relative Lage der CO-Liganden zu den übrigen Liganden ändert. Die Aktivierungsparameter (Tab. 7) wurden durch Linienform-Analyse [23,24] der temperaturabhängigen ¹³C-NMR-Signale der CO-Liganden bestimmt.

Schema 1.

Die Tieftemperatur-Grenzspektren von 5 und 6 geben deren C_s -Symmetrie wider. Für die beiden Trimethylphosphit-Liganden werden zwei ³¹P-NMR-Signale erhalten, was eine *af*-Anordnung beweist. Das Zusammenfallen der Signale bei Temperaturerhöhung ist auf eine gehinderte intramolekulare Ligandbewegung zurückzuführen [25–29]. Im wesentlichen ist diese Bewegung mit einer Rotation des Dien-Liganden gegen das $[M(CO)_2[P(OCH_3)_3]_2]$ -Komplexfragment zu beschreiben, wobei ein quasi trigonal-prismatischer Übergangszustand durchlaufen wird [4]. Die Aktivierungsparamter (Tab. 7) basieren auf dem visuellem Vergleich der temperaturabhängigen ³¹P{¹H}-NMR-Spektren mit berechneten, zeitabhängigen Spektren [24]. Die niedrigeren Aktivierungsbarrieren der Dienrotation in 4-6 im Vergleich zum Carbonyl-Austausch in 1-3 zeigen, daß unterschiedliche Bewegungsmechanismen wirksam sind. Besonders leicht erfolgt die Dien-Rotation an dem Chrom(0)-Komplex 4, was wohl mit dem Raumanspruch des tcud-Liganden zusammenhängt, der vom Chrom nicht mehr ganz erfüllt werden kann.

Experimentell kann in 1-3 eine Rotation des Dienliganden, die das bevorzugte f-Isomer in die a-, d- und e-Isomeren überführt, nicht nachgewiesen werden. Dies schließt jedoch keineswegs eine solche Ligandbewegung aus, für die wie an 4-6 ersichtlich, nur eine geringe Aktivierungsbarriere überwunden werden muß. Offensichtlich sind jedoch aus sterischen Gründen die Populationen der a-, d- und e-Isomeren zu klein um erkennbare NMR-Signale zu liefern. Umgekehrt ist in 4-6 eine "turnstile" Bewegung nicht auszuschließen, an der insgesamt drei der COund der Trimethylphosphit-Liganden beteiligt sind. Diese würde das bevorzugte af-Isomer in ad-, ae-, de-, df- und ef- umwandeln. Auch hier gibt es aufgrund der Populationsverhältnisse keinen experimentellen Nachweis für eine solche Bewegung.

Experimentelles

Alle Arbeiten wurden bei Luft- und Feuchtigkeitsausschluß unter trockenem Stickstoff ausgeführt. Die benutzten Lösungsmittel waren mit Natrium/Benzophe-

non oder Phosphorpentoxid absolutiert und mit Stickstoff gesättigt. Das zur Säulenchromatographie benutzte Kieselgel (Merck, Darmstadt; Korngröße 0.06– 0.2 mm) wurde 8 h bei 130°C ausgeheizt. Kühlbarer Drei-Kammer-Photoreaktor, UV-Lampe TQ 150 (Original Hanau-Heraeus Quarzlampen GmbH). NMR: WP 200 (Bruker), ¹H 200.13 MHz, ¹³C 50.29 MHz. IR: Modelle 297 und 1430 (Perkin-Elmer). CH-Elementaranalyse: Microanalyzer 240 (Perkin-Elmer).

Tricyclo[$6.3.0.0^{2,7}$]undeca-3,5-dien (tcud) [12], Pentacarbonyltrimethylphosphitchrom(0), -molybdän(0) und -wolfram(0) [10] sowie Tetracarbonyl-bis(trimethylphosphit)-chrom(0), -molybdän(0) und -wolfram(0) [11] wurden nach Literaturvorschrift dargestellt.

Tricarbonyl- η^4 -tricyclo[6.3.0.0^{2,7}]undeca-3,5-dien-trimethylphosphit-chrom(0)(1)molybdän(0) (2) und -wolfram(0) (3)

Lösungen von 300-500 mg $[M(CO)_5{P(OCH_3)_3}]$ (M = Cr, Mo, W) und 0.5 ml tcud in 200 ml n-Pentan werden bei 253 K einer UV-Bestrahlung ausgesetzt. Der Fortgang der Reaktion wird IR-spektroskopisch an den ν (CO)-Banden des Reaktionsgemisches verfolgt. Sobald die Banden von $[M(CO)_5{P(OCH_3)_3}]$ weitgehend verschwunden sind, wird die Bestrahlung abgebrochen und das Lösungsmittel i. Vak. abgezogen. Der trockene Rückstand wird in 5 ml n-Pentan gelöst und bei 253 K an Kieselgel chromatographiert. Zuerst wird mit n-Pentan nicht umgesetztes $[M(CO){P(OCH_3)_3}]$, nachfolgend mit n-Pentan/Methylenchlorid (5 : 1) $[M(CO)_3{P(OCH_3)_3}](\eta^4$ -tcud)] (M = Cr, Mo, W) als gelbe Zone eluiert. Das Solvens der Eluate wird i. Vak. bei 253 K entfernt, der Rückstand in 5 ml n-Pentan gelöst, filtriert und langsam auf 195 K gekühlt. 1-3 fallen als gelbe Kristalle an, die i. Vak. getrocknet werden.

Tricarbonyl- η^4 -tricyclo[6.3.0.0^{2,7}]undeca-3,5-dien-trimethylphosphit-chrom(0) (1). Ausbeute 52% bez. auf [Cr(CO)₅{P(OCH₃)₃}]. Gef.: C, 50.1; H 5.65. CrC₁₇H₂₃O₆P (406.34) ber.: C, 50.25; H, 5.71%.

Tetracarbonyl- η^4 -tricyclo[6.3.0.0^{2,7}]undeca-3,5-dien-trimethylphosphit-molybdän(0) (2). Ausbeute 53% bez. auf [Mo(CO)₅{P(OCH₃)₃}]. Gef.: C, 45.4; H, 5.16. MoC₁₇H₂₃O₆P (450.28) ber.: C, 45.35; H, 5.15%.

Tetracarbonyl- η^4 -tricyclo[6.3.0.0^{2,7}]undeca-3,5-dien-trimethylphosphit-wolfram(0) (3). Ausbeute 62% bez. auf [W(CO)₅{P(OCH₃)₃}]. Gef.: C, 38.1; H, 4.28. WC₁₇H₂₃O₆P (538.19) ber.: C, 37.94; H, 4.31%.

cis-Dicarbonyl- η^4 -tricyclo[6.3.0.0^{2,7}]undeca-3,5-dien-bis(trimethylphosphit)-chrom(0) (4), -molybdän(0) (5) und -wolfram(0) (6)

Lösungen von 400-600 mg $[M(CO)_4[P(OCH_3)_3]_2]$ (M = Cr, Mo, W) und 0.5 ml tcud in 200 ml n-Pentan werden bei 253 K solange bestrahlt, bis die $\nu(CO)$ -Banden der Ausgangsverbindungen verschwunden sind. Die Lösungen werden auf gleiche Weise wie bei 1-3 aufgearbeitet.

cis-Dicarbonyl- η^4 -tricyclo[6.3.0.0^{2,7}]undeca-3,5-dien-bis(trimethylphosphit)chrom(0) (4). Ausbeute 41% bez. auf [Cr(CO)₄[P(OCH₃)₃]₂]. Gef.: C, 45.0; H, 6.30. CrC₁₉H₃₂O₈P₂ (502.40) ber.: C, 45.42; H, 6.42%.

cis-Dicarbonyl- η^4 -tricyclo[6.3.0.0^{2,7}]undeca-3,5-dien-bis(trimethylphosphit)molybdän(0) (5). Ausbeute 63% bez. auf [Mo(CO)₄{P(OCH₃)₃}₂]. Gef.: C, 43.8; H, 6.19. MoC₁₉H₃₂O₈P₂ (546.35) ber.: C, 41.77; H, 5.90%.

Tabelle 8

Summenformel	C ₁₇ H ₂₃ O ₆ PW
М	538.19 g mol ⁻¹
Kristallsystem	triklin
Raumgruppe	PĪ
a	933.3(2) pm
b	1519.0(3) pm
c	671.7(2) pm
α	95.11(2)°
β	92.53(2)°
γ	79.09(1)°
V	0.95226(12) nm ³
Ζ	2
ρ (ber.)	1.92 g cm^{-3}
Kristallgröße	$0.22 \times 0.16 \times 0.12 \text{ mm}$
Absorptionskorrektur	empirisch
Maximale Transmission	39.28%
Minimale Transmission	25.31%
Scan-Methode	ω-Scan
20-Meßbereich	4.00-45.00°
Meßgeschwindigkeit	2.2–5.0°/min
Reflexbreite	$0.80 + 0.35 \tan(\theta)$
gemessene Reflexe	3404
beobachtete Reflexe	3110
Ablehnungskriterium	$I_{\rm obs} < 2.00 \sigma(I_{\rm obs})$
Parameterzahl	226
R	0.041
R _w	0.043
Instabilitätsfaktor p	0.002
Letzter Shift/esd	0.00
Restelektronendichte	1906 e nm ⁻³

Kristallographische Daten von Tricarbonyl- η^4 -tricyclo[6.3.0.0^{2,7}]undeca-3,5-dien-trimethylphosphit-wolfram(0) (3)

cis-Dicarbonyl- η^4 -tricyclo[6.3.0.0^{2,7}]undeca-3,5-dien-bis(trimethylphosphit)wolfram(0) (6). Ausbeute 69% bez. auf [W(CO)₄{P(OCH₃)₃}₂]. Gef.: C, 36.0; H, 5.10. WC₁₉H₃₂O₈P₂ (662.27) ber.: C, 36.27; H, 4.87%.

Röntgenstrukturanalyse von Tricarbonyl- η^4 -tricyclo[6.3.0.0^{2,7}]undeca-3,5-dien-trimethylphosphit-wolfram(0) (3)

Die Röntgendaten von $[W(CO)_3 \{P(OCH_3)_3\}(\eta^4 - C_{11}H_{14})]$ (3) wurden auf einem CAD4-Vierkreis-Diffraktometer (Enraf-Nonius) unter Verwendung von Mo- K_{α} -Strahlung ($\lambda = 71.073$ pm) gesammelt. Die Strukturen wurden durch Pattersonund Differenz-Fourier-Synthese gelöst. Die H-Atome sind anhand der geometrischen Umgebung der C-Atome berechnet und die Lageparameter in Abhängigkeit von den Bewegungen der zugehörigen C-Atome frei verfeinert. Die röntgenographischen Daten sind in Tab. 8 zusammengefaßt.

Strukturfaktorenlisten sind auf Wunsch bei den Autoren abrufbar. Weitere Einzelheiten zur Kristallstrukturbestimmung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH,

W-7514 Eggenstein Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-56024, der Autoren und des Zeitschriftenzitats angefordert werden.

Dank

Für die Unterstützung unserer Untersuchungen sind wir der Volkswagen-Stiftung und TÜBITAK (TBAC 641) zu sehr großem Dank verpflichtet.

Literatur

- 1 S. Özkar, N.K. Tunali und C.G. Kreiter, J. Organomet. Chem., 428 (1992) 345.
- 2 C.G. Kreiter und S. Özkar, J. Organomet. Chem., 152 (1978) C13.
- 3 M. Kotzian, C.G. Kreiter und S. Özkar, J. Organomet. Chem., 229 (1982) 29.
- 4 M. Kotzian, C.G. Kreiter, G. Michael und S. Özkar, Chem. Ber., 116 (1983) 3637.
- 5 S. Özkar und C.G. Kreiter, J. Organomet. Chem., 256 (1983) 57.
- 6 C.G. Kreiter, M. Kotzian, U. Schubert, R. Bau und M.A. Bruck, Z. Naturforsch., Teil B, 39 (1984) 1553.
- 7 M. Kotzian und C.G. Kreiter, J. Organomet. Chem., 289 (1985) 295.
- 8 S. Özkar und C.G. Kreiter, J. Organomet. Chem., 303 (1986) 367.
- 9 C.G. Kreiter, Adv. Organomet. Chem., 26 (1986) 297.
- 10 W. Strohmeier und F.-J. Müller, Chem. Ber., 102 (1969) 3608.
- 11 D.J. Darensbourg und R.L. Kump, Inorg. Chem., 17 (1978) 2680.
- 12 F.A. Cotton und G. Deganello, J. Am. Chem. Soc., 95 (1973) 396.
- 13 D.M. Adams, Metal-Ligand and Related Vibrations, Edward Arnold Ltd., London, 1967.
- 14 F.A. Cotton und C.S. Kraihanzel, J. Am. Chem. Soc., 84 (1962) 4432.
- 15 R.K. Harris, Can. J. Chem., 42 (1964) 2275.
- 16 M.H. Chisholm, H.C. Clark, L.E. Manzer und J.B. Stothers, J. Am. Chem. Soc., 94 (1972) 5087.
- 17 M.H. Chisholm und S. Godelski, Progr. Inorg. Chem., 20 (1976) 299.
- 18 R.D. Bertrand, F.B. Ogilvie und J.G. Verkade, J. Am. Chem. Soc., 92 (1970) 1908.
- 19 R. Matthieu, M. Lenzi und R. Poilblanc, Inorg. Chem., 9 (1970) 2030.
- 20 N.-F. Wang, D.J. Wink und J.C. Dewan, Organometallics, 9 (1990) 335.
- 21 F.A. Cotton, V.W. Day, B.A. Frenz, K.I. Hardcastle und J.M. Troup, J. Am. Chem. Soc., 95 (1973) 4522.
- 22 F.A. Cotton und B.A. Frenz, Acta Crystallogr., Sect. B, 30 (1974) 1772.
- 23 G. Binsch und H. Kessler, Angew. Chem., 92 (1980) 445; Angew. Chem., Int. Ed. Engl., 19 (1980) 411.
- 24 G. Binsch und D.A. Kleier, The Computation of Complex Exchange Broadened NMR Spectra, Program 140, Quantum Chemistry Program Exchange, Indiana University, 1969; D.A. Kleier und G. Binsch, J. Magn. Reson., 3 (1970) 146.
- 25 C.G. Kreiter, M. Lang und H. Strack, Chem. Ber., 108 (1975) 1502.
- 26 D.J. Darensbourg, Inorg. Chem., 18 (1979) 14.
- 27 D.J. Darensbourg und B.J. Baldwin, J. Am. Chem. Soc., 101 (1979) 6447.
- 28 D.J. Darensbourg, J. Organomet. Chem., 209 (1981) C37.
- 29 J.G. Gordon, II und R.H. Holm, J. Am. Chem. Soc., 92 (1970) 5319.